Controlling Linguistic Style Aspects in Neural Language Generation

نویسندگان

  • Jessica Ficler
  • Yoav Goldberg
چکیده

Most work on neural natural language generation (NNLG) focus on controlling the content of the generated text. We experiment with controlling several stylistic aspects of the generated text, in addition to its content. The method is based on conditioned RNN language model, where the desired content as well as the stylistic parameters serve as conditioning contexts. We demonstrate the approach on the movie reviews domain and show that it is successful in generating coherent sentences corresponding to the required linguistic style and content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling User Perceptions of Linguistic Style: Trainable Generation of Personality Traits

Recent work in natural language generation has begun to take linguistic variation into account, developing algorithms that are capable of modifying the system’s linguistic style based either on the user’s linguistic style or other factors, such as personality or politeness. While stylistic control has traditionally relied on handcrafted rules, statistical methods are likely to be needed for gen...

متن کامل

Data-driven Classification of Linguistic Styles in Spoken Dialogues

Language users have individual linguistic styles. A spoken dialogue system may benefit from adapting to the linguistic style of a user in input analysis and output generation. To investigate the possibility to automatically classify speakers according to their linguistic style three corpora of spoken dialogues were analyzed. Several numerical parameters were computed for every speaker. These pa...

متن کامل

Stylistic Transfer in Natural Language Generation Systems Using Recurrent Neural Networks

Linguistic style conveys the social context in which communication occurs and defines particular ways of using language to engage with the audiences to which the text is accessible. In this work, we are interested in the task of stylistic transfer in natural language generation (NLG) systems, which could have applications in the dissemination of knowledge across styles, automatic summarization ...

متن کامل

Learning to Adapt in Dialogue Systems: Data-driven Models for Personality Recognition and Generation

Dialogue systems are artefacts that converse with human users in order to achieve some task. Each step of the dialogue requires understanding the user’s input, deciding on what to reply, and generating an output utterance. Although there are many ways to express any given content, most dialogue systems do not take linguistic variation into account in both the understanding and generation phases...

متن کامل

Group Linguistic Bias Aware Neural Response Generation

For practical chatbots, one of the essential factor for improving user experience is the capability of customizing the talking style of the agents, that is, to make chatbots provide responses meeting users’ preference on language styles, topics, etc. To address this issue, this paper proposes to incorporate linguistic biases, which implicitly involved in the conversation corpora generated by hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.02633  شماره 

صفحات  -

تاریخ انتشار 2017